An Introduction to Fluorescence Resonance Energy Transfer (FRET) Technology and its Application in Bioscience
ثبت نشده
چکیده
BioTek Instruments, Inc. P.O. Box 998, Highland Park, Winooski, Vermont 05404-0998 USA Phone: 888-451-5171 Outside the USA: 802-655-4740 Email: [email protected] www.biotek.com Copyright © 2012 Fluorescence Resonance Energy Transfer (FRET) is a physical phenomenon first described over 50 years ago, that is being used more and more in biomedical research and drug discovery today. FRET relies on the distance-dependent transfer of energy from a donor molecule to an acceptor molecule. Due to its sensitivity to distance, FRET has been used to investigate molecular interactions. FRET is the radiationless transmission of energy from a donor molecule to an acceptor molecule. The donor molecule is the dye or chromophore that initially absorbs the energy and the acceptor is the chromophore to which the energy is subsequently transferred. This resonance interaction occurs over greater than interatomic distances, without conversion to thermal energy, and without any molecular collision. The transfer of energy leads to a reduction in the donor’s fluorescence intensity and excited state lifetime, and an increase in the acceptor’s emission intensity. A pair of molecules that interact in such a manner that FRET occurs is often referred to as a donor/acceptor pair.
منابع مشابه
Methods used to study the oligomeric structure of G-protein-coupled receptors
G-protein-coupled receptors (GPCRs), which constitute the largest family of cell surface receptors, were originally thought to function as monomers, but are now recognized as being able to act in a wide range of oligomeric states and indeed, it is known that the oligomerization state of a GPCR can modulate its pharmacology and function. A number of experimental techniques have been devised to s...
متن کاملIntrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques
Förster resonance energy transfer (FRET) occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluoresc...
متن کاملAn intriguing pH-triggered FRET-based biosensor emission of a pyrazoline-doxorubicin couple and its application in living cells.
A unique pH-driven Förster resonance energy transfer (FRET) based biosensor emission by a pyrazoline-doxorubicin pair has been deciphered with a bioimaging application in a live HepG2 cell whereas conformational switching of both molecules at elevated pH reveals a fascinating twist (FRET-OFF) via strong fluorescent exciplex formation.
متن کاملFLIM FRET Technology for Drug Discovery: Automated Multiwell-Plate High-Content Analysis, Multiplexed Readouts and Application in Situ**
A fluorescence lifetime imaging (FLIM) technology platform intended to read out changes in Förster resonance energy transfer (FRET) efficiency is presented for the study of protein interactions across the drug-discovery pipeline. FLIM provides a robust, inherently ratiometric imaging modality for drug discovery that could allow the same sensor constructs to be translated from automated cell-bas...
متن کاملFörster resonance energy transfer photoacoustic microscopy.
Förster, or fluorescence, resonance energy transfer (FRET) provides fluorescence signals sensitive to intra- and inter-molecular distances in the 1 to 10 nm range. Widely applied in the fluorescence imaging environment, FRET enables visualization of physicochemical processes in molecular interactions and conformations. In this paper, we report photoacoustic imaging of FRET, based on nonradiativ...
متن کامل